Skip to Content
Python Machine Learning Cookbook
book

Python Machine Learning Cookbook

by Prateek Joshi, Vahid Mirjalili
June 2016
Beginner to intermediate
304 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning Cookbook

Evaluating the accuracy using cross-validation

The cross-validation is an important concept in machine learning. In the previous recipe, we split the data into training and testing datasets. However, in order to make it more robust, we need to repeat this process with different subsets. If we just fine-tune it for a particular subset, we may end up overfitting the model. Overfitting refers to a situation where we fine-tune a model too much to a dataset and it fails to perform well on unknown data. We want our machine learning model to perform well on unknown data.

Getting ready…

Before we discuss how to perform cross-validation, let's talk about performance metrics. When we are dealing with machine learning models, we usually care about three things: ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781786464477Supplemental Content