Tackling class imbalance
Until now, we dealt with problems where we had a similar number of datapoints in all our classes. In the real world, we might not be able to get data in such an orderly fashion. Sometimes, the number of datapoints in one class is a lot more than the number of datapoints in other classes. If this happens, then the classifier tends to get biased. The boundary won't reflect of the true nature of your data just because there is a big difference in the number of datapoints between the two classes. Therefore, it becomes important to account for this discrepancy and neutralize it so that our classifier remains impartial.
How to do it…
- Let's load the data:
input_file = 'data_multivar_imbalance.txt' X, y = utilities.load_data(input_file) ...
Get Python Machine Learning Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.