Skip to Content
Python Machine Learning Cookbook
book

Python Machine Learning Cookbook

by Prateek Joshi, Vahid Mirjalili
June 2016
Beginner to intermediate
304 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning Cookbook

Computing the Pearson correlation score

The Euclidean distance score is a good metric, but it has some shortcomings. Hence, Pearson correlation score is frequently used in recommendation engines. Let's see how to compute it.

How to do it…

  1. Create a new Python file, and import the following packages:
    import json
    import numpy as np
  2. We will define a function to compute the Pearson correlation score between two users in the database. Our first step is to confirm that these users exist in the database:
    # Returns the Pearson correlation score between user1 and user2 def pearson_score(dataset, user1, user2): if user1 not in dataset: raise TypeError('User ' + user1 + ' not present in the dataset') if user2 not in dataset: raise TypeError('User ' + user2 + ' ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781786464477Supplemental Content