June 2016
Beginner to intermediate
304 pages
6h 24m
English
The k-nearest neighbors is an algorithm that uses k-nearest neighbors in the training dataset to find the category of an unknown object. When we want to find the class to which an unknown point belongs to, we find the k-nearest neighbors and take a majority vote. Let's take a look at how to construct this.
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn import neighbors, datasets from utilities import load_data
data_nn_classifier.txt file for input data. Let's load this input data:# Load input data input_file = 'data_nn_classifier.txt' data = load_data(input_file) X, y = ...