Skip to Content
Python Machine Learning Cookbook
book

Python Machine Learning Cookbook

by Prateek Joshi, Vahid Mirjalili
June 2016
Beginner to intermediate
304 pages
6h 24m
English
Packt Publishing
Content preview from Python Machine Learning Cookbook

Building a recurrent neural network for sequential data analysis

Recurrent neural networks are really good at analyzing sequential and time-series data. You can learn more about them at http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns. When we deal with sequential and time-series data, we cannot just extend generic models. The temporal dependencies in the data are really important, and we need to account for this in our models. Let's look at how to build them.

How to do it…

  1. Create a new Python file, and import the following packages:
    import numpy as np
    import matplotlib.pyplot as plt
    import neurolab as nl
  2. Define a function to create a waveform, based on input parameters:
    def create_waveform(num_points): # ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: Real World Machine Learning

Python: Real World Machine Learning

Prateek Joshi, John Hearty, Bastiaan Sjardin, Luca Massaron, Alberto Boschetti

Publisher Resources

ISBN: 9781786464477Supplemental Content