Skip to Content
R Deep Learning Cookbook
book

R Deep Learning Cookbook

by PKS Prakash, Achyutuni Sri Krishna Rao
August 2017
Intermediate to advanced
288 pages
8h 6m
English
Packt Publishing
Content preview from R Deep Learning Cookbook

Setting up a deep RNN model

The RNN architecture is composed of input, hidden, and output layers. A RNN network can be made deep by decomposing the hidden layer into multiple groups or by adding computational nodes within RNN architecture such as including model computation such as multilayer perceptron for micro learning. The computational nodes can be added between input-hidden, hidden-hidden, and hidden-output connection. An example of a multilayer deep RNN model is shown in the following figure:

An example of two-layer Deep Recurrent Neural Network architecture
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R Cookbook

Deep Learning with R Cookbook

Swarna Gupta, Rehan Ali Ansari, Dipayan Sarkar
The Deep Learning with Keras Workshop

The Deep Learning with Keras Workshop

Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
Deep Learning for Chest Radiographs

Deep Learning for Chest Radiographs

Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar

Publisher Resources

ISBN: 9781787121089Supplemental Content