August 2017
Intermediate to advanced
288 pages
8h 6m
English
This recipe covers the steps for evaluating the output from RBM-based collaborative filtering:
inputUser = as.matrix(t(trX[75,]))names(inputUser) <- movies_df$id_order
inputUser <- inputUser[inputUser>0]
top_rated_movies <- movies_df[as.numeric(names(inputUser)[order(inputUser,decreasing = TRUE)]),]$Titletop_rated_genres <- movies_df[as.numeric(names(inputUser)[order(inputUser,decreasing = TRUE)]),]$Genrestop_rated_genres <- as.data.frame(top_rated_genres,stringsAsFactors=F)top_rated_genres$count <- 1top_rated_genres <- aggregate(count~top_rated_genres,FUN=sum,data=top_rated_genres) ...