August 2017
Intermediate to advanced
288 pages
8h 6m
English
# Convolutional Layer 1conv1 <- create_conv_layer(input=x_image,num_input_channels=num_channels,filter_size=filter_size1,num_filters=num_filters1,use_pooling=TRUE)
layer_conv1 <- conv1$layerconv1_images <- conv1$layer$eval(feed_dict = dict(x = train_data$images, y_true = train_data$labels))
weights_conv1 <- conv1$weightsweights_conv1 <- weights_conv1$eval(session=sess)
drawImage_conv(sample(1:50000, size=1), images.bw = conv1_images, images.lab=images.lab.train)