August 2017
Intermediate to advanced
288 pages
8h 6m
English
Here is how you train a deep learning model on a GPU:
# Mode re-train model <- mx.model.FeedForward.create( symbol = new_soft, X = train, eval.data = val, ctx = mx.gpu(0), eval.metric = mx.metric.accuracy, num.round = 5, learning.rate = 0.05, momentum = 0.85, wd = 0.00001, kvstore = "local", array.batch.size = 128, epoch.end.callback = mx.callback.save.checkpoint("inception_bn"), batch.end.callback = mx.callback.log.train.metric(150), initializer = mx.init.Xavier(factor_type = "in", magnitude = 2.34), optimizer ...