Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Stochastic and minibatch gradient descents

The algorithm describe in the previous section assumes a forward and corresponding backwards pass over the entire dataset and as such it's called batch gradient descent.

Another possible way to do gradient descent would be to use a single data point at a time, updating the network weights as we go. This method might help speed up convergence around saddle points where the network might stop converging. Of course, the error estimation of only a single point may not be a very good approximation of the error of the entire dataset.

The best solution to this problem is using mini batch gradient descent, in which we will take some random subset of the data called a mini batch to compute our error and update ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content