Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Measuring ROC AUC in a custom callback

Let's use one more callback. This time, we will build a custom callback that computes Receiver Operating Characteristic Area Under the Curve (ROC AUC) at the end of every epoch, on both training and testing sets.

Creating a custom callback in Keras is actually really simple. All we need to do is create a class, inherent Callback, and override the method we need. Since we want to calculate the ROC AUC score at the end of each epoch, we will override on _epoch_end:

from keras.callbacks import Callbackclass RocAUCScore(Callback):    def __init__(self, training_data, validation_data):        self.x = training_data[0]        self.y = training_data[1]        self.x_val = validation_data[0]        self.y_val = validation_data[1] super(RocAUCScore, ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content