Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Building datasets for deep learning

Compared to other predictive models that you might have used, deep neural networks are very complicated. Consider a network with 100 inputs, two hidden layers with 30 neurons each, and a logistic output layer. That network would have 3,930 learnable parameters as well as the hyperparameters needed for optimization, and that's a very small example. A large convolutional neural network will have hundreds of millions of learnable parameters. All these parameters are what make deep neural networks so amazing at learning structures and patterns. However, this also makes overfitting possible.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content