Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Summary

In this chapter, we talked about using deep neural networks as binary classifiers. We spent quite a bit of time talking about network architecture design choices and touched on the idea that searching and experimentation is the best current way to choose an architecture.

We learned how to use the checkpoint callback in Keras to give us the power to go back in time and find a version of the model that has performance characteristics we like. Then we created and used a custom callback to measure ROC AUC score as the model trained. We wrapped up by looking at how to use the Keras .predict() method with traditional metrics from sklearn.metrics.

In the next chapter, we'll take a look at multiclass classification, and we will talk more ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content