Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Measuring precision, recall, and f1-score

As you're likely experienced with other binary classifiers, I thought it was wise to take a few sentences to talk about how to create some of the normal metrics used with more traditional binary classifiers.

One difference between the Keras functional API and what you might be used to in scikit-learn is the behavior of the .predict() method. When using Keras, .predict() will return an nxk matrix of k class probabilities for each of the n classes. For a binary classifier, there will be only one column, the class probability for class 1. This makes the Keras .predict() more like the .predict_proba() in scikit-learn.

When calculating precision, recall, or other class-based metrics, you'll need to transform ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content