March 2018
Intermediate to advanced
272 pages
7h 53m
English
Now let's look at the entire network, now that we understand the parts. The network is shown in the following code for your reference:
def build_network(vocab_size, embedding_dim, sequence_length): input = Input(shape=(sequence_length,), name="Input") embedding = Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=sequence_length, name="embedding")(input) lstm1 = LSTM(10, activation='tanh', return_sequences=False, dropout=0.2, recurrent_dropout=0.2, name='lstm1')(embedding) output = Dense(1, activation='sigmoid', name='sigmoid')(lstm1) model = Model(inputs=input, outputs=output) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model
As we have with other ...