Skip to Content
Deep Learning Quick Reference
book

Deep Learning Quick Reference

by Mike Bernico
March 2018
Intermediate to advanced
272 pages
7h 53m
English
Packt Publishing
Content preview from Deep Learning Quick Reference

Training the Keras model

Now that our network has been built and compiled, all that's left is to train it. Much like in Python's scikit-learn, you can do that by calling .fit() on the model instance, as shown in the following code:

model.fit(x=data["train_X"], y=data["train_y"], batch_size=32, epochs=200, verbose=1, validation_data=(data["val_X"], data["val_y"]))

Let us walk through a few of the important arguments the Keras fit method takes. I will assume that you're familiar with mini-batch gradient descent and training epochs but if you aren't, please check Chapter 1, The Building Blocks of Deep Learning, for an overview. The important arguments in the Keras fit model are as follows:

  • batch_size: Keras defaults to a batch size of 32. The ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook

Rajdeep Dua, Sujit Pal, Manpreet Singh Ghotra
Deep Learning with Keras

Deep Learning with Keras

Antonio Gulli, Sujit Pal

Publisher Resources

ISBN: 9781788837996Supplemental Content