Skip to Content
Java Deep Learning Projects
book

Java Deep Learning Projects

by Md. Rezaul Karim
June 2018
Intermediate to advanced
436 pages
10h 33m
English
Packt Publishing
Content preview from Java Deep Learning Projects

Factorization machines in recommender systems

In real life, most recommendation problems assume that we have a rating dataset formed by a collection of (user, item, and rating) tuples. However, in many applications, we have plenty of item metadata (tags, categories, and genres) that can be used to make better predictions.

This is one of the benefits of using FMs with feature-rich datasets, because there is a natural way in which extra features can be included in the model, and higher-order interactions can be modeled using the dimensionality parameter.

A few recent types of research show which feature-rich datasets give better predictions:

  • Xiangnan He and Tat-Seng Chua, Neural Factorization Machines for Sparse Predictive Analytics. During ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Essentials

Java Deep Learning Essentials

Yusuke Sugomori
Machine Learning in Java - Second Edition

Machine Learning in Java - Second Edition

AshishSingh Bhatia, Bostjan Kaluza
Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella

Publisher Resources

ISBN: 9781788997454Supplemental Content