Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

Summary

In this chapter, you have seen the building blocks of computer vision models. We've learned about convolutional layers, and both the ReLU activation and regularization methods. You have also seen a number of ways to use neural networks creatively, such as with Siamese networks and bounding box predictors.

You have also successfully implemented and tested all these approaches on a simple benchmark task, the MNIST dataset. We scaled up our training and used a pretrained VGG model to classify thousands of plant images, before then using a Keras generator to load images from disk on the fly and customizing the VGG model to fit our new task.

We also learned about the importance of image augmentation and the modularity tradeoff in building computer ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content