Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

Exercises

Now we're at the end of the chapter, why not try some of the following exercises? You'll find guides on how to complete them all throughout this chapter:

  • A good trick is to use LSTMs on top of one-dimensional convolution, as one-dimensional convolution can go over large sequences while using fewer parameters. Try to implement an architecture that first uses a few convolutional and pooling layers and then a few LSTM layers. Try it out on the web traffic dataset. Then try adding (recurrent) dropout. Can you beat the LSTM model?
  • Add uncertainty to your web traffic forecasts. To do this, remember to run your model with dropout turned on at inference time. You will obtain multiple forecasts for one time step. Think about what this would mean ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content