May 2019
Intermediate to advanced
456 pages
11h 38m
English
Over the course of the last seven chapters we've developed a large toolbox of machine learning algorithms that we could use for machine learning problems in finance. To help round-off this toolbox, we're now going to look at what you can do if your algorithms don't work.
Machine learning models fail in the worst way: silently. In traditional software, a mistake usually leads to the program crashing, and while they're annoying for the user, they are helpful for the programmer. At least it's clear that the code failed, and often the developer will find an accompanying crash report that describes what went wrong. Yet as you go beyond this book and start developing your own models, you'll sometimes ...