Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

LSTM

In the last section, we learned about basic RNNs. In theory, simple RNNs should be able to retain even long-term memories. However, in practice, this approach often falls short because of the vanishing gradients problem.

Over the course of many timesteps, the network has a hard time keeping up meaningful gradients. While this is not the focus of this chapter, a more detailed exploration of why this happens can be read in the 1994 paper, Learning long-term dependencies with gradient descent is difficult, available at -https://ieeexplore.ieee.org/document/279181 - by Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

In direct response to the vanishing gradients problem of simple RNNs, the Long Short-Term Memory (LSTM) layer was invented. This ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content