Skip to Content
Machine Learning for Finance
book

Machine Learning for Finance

by James Le, Jannes Klaas
May 2019
Intermediate to advanced
456 pages
11h 38m
English
Packt Publishing
Content preview from Machine Learning for Finance

ARIMA

Earlier, in the section on exploratory data analysis, we talked about how seasonality and stationarity are important elements when it comes to forecasting time series. In fact, median forecasting has trouble with both. If the mean of a time series continuously shifts, then median forecasting will not continue the trend, and if a time series shows cyclical behavior, then the median will not continue with the cycle.

ARIMA which stands for Autoregressive Integrated Moving Average, is made up of three core components:

  • Autoregression: The model uses the relationship between a value and a number of lagged observations.
  • Integrated: The model uses the difference between raw observations to make the time series stationary. A time series going continuously ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Finance

Machine Learning for Finance

Aryan Singh
Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance

Hariom Tatsat, Sahil Puri, Brad Lookabaugh

Publisher Resources

ISBN: 9781789136364Supplemental Content