November 2019
Intermediate to advanced
346 pages
9h 36m
English
In machine learning, our goal is to create a program that is able to perform tasks it has never been explicitly taught to perform. The way we do that is to use data we have collected to train or fit a mathematical or statistical model. The data used to fit the model is referred to as training data. The resulting trained model is then used to predict future, previously-unseen data. In this way, the program is able to manage new situations without human intervention.
One of the major challenges for a machine learning practitioner is the danger of overfitting – creating a model that performs well on the training data but is not able to generalize to new, previously-unseen data. In order to combat the problem of ...