Skip to Content
Machine Learning for Cybersecurity Cookbook
book

Machine Learning for Cybersecurity Cookbook

by Emmanuel Tsukerman
November 2019
Intermediate to advanced content levelIntermediate to advanced
346 pages
9h 36m
English
Packt Publishing
Content preview from Machine Learning for Cybersecurity Cookbook

Train-test-splitting your data

In machine learning, our goal is to create a program that is able to perform tasks it has never been explicitly taught to perform. The way we do that is to use data we have collected to train or fit a mathematical or statistical model. The data used to fit the model is referred to as training data. The resulting trained model is then used to predict future, previously-unseen data. In this way, the program is able to manage new situations without human intervention.

One of the major challenges for a machine learning practitioner is the danger of overfitting – creating a model that performs well on the training data but is not able to generalize to new, previously-unseen data. In order to combat the problem of ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Soma Halder, Sinan Ozdemir
Machine Learning on Kubernetes

Machine Learning on Kubernetes

Faisal Masood, Ross Brigoli

Publisher Resources

ISBN: 9781789614671Supplemental Content