Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Back to backpropagation

We have covered the forward propagation in detail in Chapter 1, Neural Network and Artificial Intelligence Concepts, and a little about backpropagation using gradient descent. Backpropagation is one of the important concepts for understanding neural networks and it relies on calculus to update the weights and biases in each layer. Backpropagation of errors is similar to learning from mistakes. We correct ourselves in our mistakes (errors) in every iteration, until we reach a point called convergenceThe goal of backpropagation is to correct the weights in each layer and minimize the overall error at the output layer.

Neural network learning heavily relies on backpropagation in feed-forward networks. The usual steps ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content