Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Recurrent and Convolutional Neural Networks

Until now, we have been studying feed-forward networks, where the data moves in one direction and there is no interconnection of nodes in each layer. In the presence of basic hypotheses that interact with some problems, the intrinsic unidirectional structure of feed-forward networks is strongly limiting. However, it is possible to start from it and create networks in which the results of computing one unit affect the computational process of the other. It is evident that algorithms that manage the dynamics of these networks must meet new convergence criteria.

In this chapter, we will introduce Recurrent Neural Networks (RNN), which are networks with cyclic data flows. We will also see Convolutional ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content