Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Gradient descent

Gradient descent is an iterative approach for error correction in any learning model. For neural networks during backpropagation, the process of iterating the update of weights and biases with the error times derivative of the activation function is the gradient descent approach. The steepest descent step size is replaced by a similar size from the previous step. Gradient is basically defined as the slope of the curve and is the derivative of the activation function:

The objective of deriving gradient descent at each step is to find the global cost minimum, where the error is the lowest. And this is where the model has a good ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content