Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Simple perceptron – a linear separable classifier

As we saw, a simple perceptron is a single layer neural unit which is a linear classifier. It is a neuron capable of producing only two output patterns, which can be synthesized in active or inactive. Its decision rule is implemented by a threshold behavior: if the sum of the activation patterns of the individual neurons that make up the input layer, weighted for their weights, exceeds a certain threshold, then the output neuron will adopt the output pattern active. Conversely, the output neuron will remain in the inactive state.

As mentioned, the output is the sum of weights*inputs and a function applied on top of it; output is +1 (y>0) or -1(y<=0), as shown in the following figure:

 

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content