Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Avoiding overfitting in the model

The fitting of the training data causes the model to determine the weights and biases along with the activation function values. When the algorithm does too well in some training dataset, it is said to be too much aligned to that particular dataset. This leads to high variance in the output values when the test data is very different from the training data. This high estimate variance is called overfitting. The predictions are affected due to the training data provided.

There are many possible ways to handle overfitting in neural networks. The first is regularization, similar to regression. There are two kinds of regularizations:

  • L1 or lasso regularization
  • L2 or ridge regularization
  • Max norm constraints ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content