Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Training and Visualizing a Neural Network in R

As seen in Chapters 1, Neural Network and Artificial Intelligence Concepts, and Chapter 2, Learning Process in Neural Networks, training a neural network model forms the basis for building a neural network.

Feed-forward and backpropagation are the techniques used to determine the weights and biases of the model. The weights can never be zero but the biases can be zero. To start with, the weights are initialized a random number, and by gradient descent, the errors are minimized; we get a set of best possible weights and biases for the model.

Once the model is trained using any of the R functions, we can pass on the independent variables to predict the target or unknown variable. In this chapter, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content