August 2018
Intermediate to advanced
378 pages
9h 9m
English
In this chapter, we used deep learning for image classification. We discussed the different layer types that are used in image classification: convolutional layers, pooling layers, dropout, dense layers, and the softmax activation function. We saw an R-Shiny application that shows how convolutional layers perform feature engineering on image data.
We used the MXNet deep learning library in R to create a base deep learning model which got 97.1% accuracy. We then developed a CNN deep learning model based on the LeNet architecture, which achieved over 98.3% accuracy on test data. We also used a slightly harder dataset (Fashion MNIST) and created a new model that achieved over 91% accuracy. This accuracy score was better than all of the ...