Skip to Content
R Deep Learning Essentials - Second Edition
book

R Deep Learning Essentials - Second Edition

by Mark Hodnett, Joshua F. Wiley
August 2018
Intermediate to advanced
378 pages
9h 9m
English
Packt Publishing
Content preview from R Deep Learning Essentials - Second Edition

Summary

This chapter covered topics that are critical to success in deep learning projects. These included the different types of evaluation metric that can be used to evaluate the model. We looked at some issues that can come up in data preparation, including if you only have a small amount of data to train on and how to create different splits in the data, that is, how to create proper train, test, and validation datasets. We looked at two important issues that can cause the model to perform poorly in production, different data distributions, and data leakage. We saw how data augmentation can be used to improve an existing model by creating artificial data and looked at tuning hyperparameters in order to improve the performance of a deep ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

R Deep Learning Cookbook

R Deep Learning Cookbook

PKS Prakash, Achyutuni Sri Krishna Rao
Hands-On Deep Learning with R

Hands-On Deep Learning with R

Rodger Devine, Michael Pawlus
R: Unleash Machine Learning Techniques

R: Unleash Machine Learning Techniques

Raghav Bali, Dipanjan Sarkar, Brett Lantz, Cory Lesmeister
Deep Learning with R Cookbook

Deep Learning with R Cookbook

Swarna Gupta, Rehan Ali Ansari, Dipayan Sarkar

Publisher Resources

ISBN: 9781788992893Supplemental Content