Skip to Content
R Deep Learning Essentials - Second Edition
book

R Deep Learning Essentials - Second Edition

by Mark Hodnett, Joshua F. Wiley
August 2018
Intermediate to advanced
378 pages
9h 9m
English
Packt Publishing
Content preview from R Deep Learning Essentials - Second Edition

The problem of overfitting data – the consequences explained

A common issue in machine learning is overfitting data. Generally, overfitting is used to refer to the phenomenon where the model performs better on the data used to train the model than it does on data not used to train the model (holdout data, future real use, and so on). Overfitting occurs when a model memorizes part of the training data and fits what is essentially noise in the training data. The accuracy in the training data is high, but because the noise changes from one dataset to the next, this accuracy does not apply to unseen data, that is, we can say that the model does not generalize very well.

Overfitting can occur at any time, but tends to become more severe as the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

R Deep Learning Cookbook

R Deep Learning Cookbook

PKS Prakash, Achyutuni Sri Krishna Rao
Hands-On Deep Learning with R

Hands-On Deep Learning with R

Rodger Devine, Michael Pawlus
R: Unleash Machine Learning Techniques

R: Unleash Machine Learning Techniques

Raghav Bali, Dipanjan Sarkar, Brett Lantz, Cory Lesmeister
Deep Learning with R Cookbook

Deep Learning with R Cookbook

Swarna Gupta, Rehan Ali Ansari, Dipayan Sarkar

Publisher Resources

ISBN: 9781788992893Supplemental Content