Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
大数据项目管理:从规划到实现
by
Ted Malaska
,
Jonathan Seidman
January 2020
Beginner to intermediate
155 pages
3h 17m
Chinese
Posts & Telecom Press
Content preview from
大数据项目管理:从规划到实现
112
|
第
6
章
使用的技术和算法
例如,用于执行
k
均值聚类作业的
Spark MLlib
或
TensorFlow
。
输入特征
可以将特征看作机器学习算法的输入。例如,从输入数据集中选择特定的数据属性,作
为
k
均值聚类的输入特征。
训练数据集和测试数据集
用于训练、验证和测试模型的数据。
训练目标
用来评估模型是否成功。这些目标将高度依赖于应用程序的需求、算法等,例如分类模
型的分类准确性。
人为调整模型
某些模型可以通过手动输入进行修改。对于这种模型,最重要的是捕获调整了哪些内容
以及背后的原因。
模型负责人
负责实现、定义已部署模型的人是谁?
6.2.5
报告和仪表盘
常见的输出是人类可读的报告和仪表盘。创建它们很容易,但很快就会过时。
作为元数据策略的一部分,为了获取可见和可操作的报告,至少应该捕获以下内容:
•
数据源;
•
数据转换;
•
有关报告创建者的信息;
•
日志修改;
•
报告的目的;
•
表示它与哪些内容相关的标签。
标签有助于将报告映射回报告所涉及的内容,例如与区域、位置、版本等相关的标签。因
为一个组织可能会有数百甚至数千个仪表盘,所以标签可以作为一种将仪表盘链接回它们
所报告的内容的工具,从而减少重复报告的生成。
6.3
元数据收集
元数据收集是一项极具挑战性的任务。事实上,很多公司不具备捕获元数据的有效流程。
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
Web开发的身份和数据安全
Jonathan LeBlanc, Tim Messerschmidt
金融人工智能:用Python实现AI量化交易
Yves Hilpisch
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
管理Kubernetes
Brendan Burns, Craig Tracey
Publisher Resources
ISBN: 9787115457363