Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

There's more...

When we increase the batch size, the number of iterations will eventually reduce, hence the number of evaluations will also be reduced. This can overfit the data for a large batch size. A batch size of 1 is as useless as a batch size based on an entire dataset. So, you need to experiment with values starting from a safe arbitrary point.

A very small learning rate will lead to a very small convergence rate to the target. This can also impact the training time. If the learning rate is very large, this will cause divergent behavior in the model. We need to increase the learning rate until we observe the evaluation metrics getting better. There is an implementation of a cyclic learning rate in the fast.ai and Keras libraries; ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content