Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

Backpropagation

The backbone of a neural network is the backpropagation algorithm. Refer to the sample neural network structure shown as follows:

For any neural network, data flows from the input layer to the output layer during the forward pass. Each circle in the diagram represents a neuron. Every layer has a number of neurons present. Our data will pass through the neurons across layers. The input needs to be in a numerical format to support computational operations in neurons. Each neuron in the neural network is assigned a weight (matrix) and an activation function. Using the input data, weight matrix, and an activation function, a probabilistic ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content