Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

There's more...

When you perform k-fold cross-validation, data is divided into k number of subsets. For every subset, we perform evaluation by keeping one of the subsets for testing and the remaining k-1 subsets for training. We will repeat this k number of times. Effectively, we use the entire data for training with no data loss, as opposed to wasting some of the data on testing.

Underfitting is handled here. However, note that we perform the evaluation k number of times only.

When you perform batch training, the entire dataset is divided as per the batch size. If your dataset has 1,000 records and the batch size is 8, then you have 125 training batches.

You need to note the training-to-testing ratio as well. According to that ratio, every ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content