Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

How it works...

In step 2, we created ContinuousParameterSpace to configure the search space for hyperparameter optimization:

ParameterSpace<Double> learningRateParam = new ContinuousParameterSpace(0.0001,0.01);

In the preceding case, the hyperparameter tuning process will select continuous values in the range (0.0001, 0.01) for the learning rate. Note that arbiter doesn't really automate the hyperparameter tuning process. We still need to specify the range of values or a list of options by which the hyperparameter tuning process takes place. In other words, we need to specify a search space with all the valid values for the tuning process to pick the best combination that can produce the best results. We have also mentioned IntegerParameterSpace ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content