Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

How it works...

A workspace is a memory management model that enables the reuse of memory for cyclic workloads without having to introduce a JVM garbage collector. INDArray memory content is invalidated once in every workspace loop. Workspaces can be integrated for training or inference.

In step 1, we start with workspace benchmarking. The detach() method will detach the specific INDArray from the workspace and will return a copy. So, how do we enable workspace modes for our training instance? Well, if you're using the latest DL4J version (from 1.0.0-alpha onwards), then this feature is enabled by default. We target version 1.0.0-beta 3 in this book.

In step 2, we removed workspaces from the memory, as shown here:

Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content