Skip to Content
Java Deep Learning Cookbook
book

Java Deep Learning Cookbook

by Rahul Raj
November 2019
Intermediate to advanced
304 pages
8h 40m
English
Packt Publishing
Content preview from Java Deep Learning Cookbook

How it works...

We added layers to the network by calling the layer() method as mentioned in step 2. Input layers are added using DenseLayer. Also, we need to add an activation function for the input layer. We specified the activation function by calling the activation() method. We discussed activation functions in Chapter 1, Introduction to Deep Learning in Java. You can use one of the available activation functions in DL4J to the activation() method. The most generic activation function used is RELU. Here are roles of other methods in layer design:

  • nIn(): This refers to the number of inputs for the layer. For an input layer, this is nothing but the number of input features.
  • nOut(): This refers to number of outputs to next dense layer in ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Projects

Java Deep Learning Projects

Md. Rezaul Karim
Java: Data Science Made Easy

Java: Data Science Made Easy

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Java 9 High Performance

Java 9 High Performance

Mayur Ramgir, Nick Samoylov
Introduction to Deep Learning Using PyTorch

Introduction to Deep Learning Using PyTorch

Goku Mohandas, Alfredo Canziani

Publisher Resources

ISBN: 9781788995207Supplemental Content