Skip to Content
Python: Real-World Data Science
book

Python: Real-World Data Science

by Dusty Phillips, Fabrizio Romano, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
June 2016
Beginner to intermediate content levelBeginner to intermediate
1255 pages
29h 1m
English
Packt Publishing
Content preview from Python: Real-World Data Science

Downsampling time series data

Downsampling reduces the number of samples in the data. During this reduction, we are able to apply aggregations over data points. Let's imagine a busy airport with thousands of people passing through every hour. The airport administration has installed a visitor counter in the main area, to get an impression of exactly how busy their airport is.

They are receiving data from the counter device every minute. Here are the hypothetical measurements for a day, beginning at 08:00, ending 600 minutes later at 18:00:

>>> rng = pd.date_range('4/29/2015 8:00', periods=600, freq='T')
>>> ts = pd.Series(np.random.randint(0, 100, len(rng)), index=rng)
>>> ts.head()
2015-04-29 08:00:00     9
2015-04-29 08:01:00    60
2015-04-29 08:02:00 ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev

Publisher Resources

ISBN: 9781786465160