Skip to Content
Python: Real-World Data Science
book

Python: Real-World Data Science

by Dusty Phillips, Fabrizio Romano, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
June 2016
Beginner to intermediate content levelBeginner to intermediate
1255 pages
29h 1m
English
Packt Publishing
Content preview from Python: Real-World Data Science

Feature creation

Sometimes, just selecting features from what we have isn't enough. We can create features in different ways from features we already have. The one-hot encoding method we saw previously is an example of this. Instead of having a category features with options A, B and C, we would create three new features Is it A?, Is it B?, Is it C?.

Creating new features may seem unnecessary and to have no clear benefit—after all, the information is already in the dataset and we just need to use it. However, some algorithms struggle when features correlate significantly, or if there are redundant features. They may also struggle if there are redundant features.

For this reason, there are various ways to create new features from the features we ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev

Publisher Resources

ISBN: 9781786465160