Skip to Content
Python: Real-World Data Science
book

Python: Real-World Data Science

by Dusty Phillips, Fabrizio Romano, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
June 2016
Beginner to intermediate content levelBeginner to intermediate
1255 pages
29h 1m
English
Packt Publishing
Content preview from Python: Real-World Data Science

Grouping data

One typical workflow during data exploration looks as follows:

  • You find a criterion that you want to use to group your data. Maybe you have GDP data for every country along with the continent and you would like to ask questions about the continents. These questions usually lead to some function applications- you might want to compute the mean GDP per continent. Finally, you want to store this data for further processing in a new data structure.
  • We use a simpler example here. Imagine some fictional weather data about the number of sunny hours per day and city:
    >>> df
              date    city  value
    0   2000-01-03  London      6
    1   2000-01-04  London      3
    2   2000-01-05  London      4
    3   2000-01-03  Mexico      3
    4   2000-01-04  Mexico      9
    5   2000-01-05  Mexico      8
    6 2000-01-03 Mumbai ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev

Publisher Resources

ISBN: 9781786465160