Skip to Content
Python: Real-World Data Science
book

Python: Real-World Data Science

by Dusty Phillips, Fabrizio Romano, Phuong Vo.T.H, Martin Czygan, Robert Layton, Sebastian Raschka
June 2016
Beginner to intermediate content levelBeginner to intermediate
1255 pages
29h 1m
English
Packt Publishing
Content preview from Python: Real-World Data Science

Chapter 10 – Clustering News Articles

Real-time clusterings

The k-means algorithm can be iteratively trained and updated over time, rather than discrete analyses at given time frames. Cluster movement can be tracked in a number of ways—for instance, you can track which words are popular in each cluster and how much the centroids move per day. Keep the API limits in mind—you probably only need to do one check every few hours to keep your algorithm up-to-date.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python for Data Science

Python for Data Science

Yuli Vasiliev

Publisher Resources

ISBN: 9781786465160