3.1 Introduction
The MPEG-x and H.26x video coding standards adopt a hybrid coding approach which employs block matching (BMA) motion compensation and the discrete cosine transform (DCT). The reasons are that (a) a significant proportion of the motion trajectories found in natural video can be approximately described with arigid translational motion model; (b) fewer bits are required to describe simple translational motion; and (c) implementation is relatively straightforward and amenable to hardware solutions.
The hybrid video systems have provided interoperability in the heterogeneous network systems. Considering that transmission bandwidth is still a valuable commodity, ongoing developments in video coding seek scalability solutions to achieve a one-coding–multiple-decoding feature. To this end, the Joint Video Team of the ITU-T Video Coding Expert Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) is standardizing a scalability extension to the existing H.264/AVC codec. The H.264-based scalable video coding (SVC) allows partial transmission and decoding to the bitstream, resulting in various options for picture quality and spatio-temporal resolutions.
In this chapter, several advanced features/techniques to do with scalable video coding are described, mostly related to 3D video applications. In Section 3.1.1, applications and scenarios for the scalable coding systems are described. The advances of scalable video coding in 3D video applications are discussed in ...
Get Visual Media Coding and Transmission now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.