Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
데이터 과학을 위한 통계: 데이터 분석에서 머신러닝까지 50가지 핵심 개념
by
이준용
,
피터 브루스
,
앤드루 브루스
October 2018
Beginner to intermediate
328 pages
7h 58m
Korean
Hanbit Media, Inc.
Content preview from
데이터 과학을 위한 통계: 데이터 분석에서 머신러닝까지 50가지 핵심 개념
8
CONTENTS
지은이
·
옮긴이 소개
........................................................................................................
4
옮긴이의 글
....................................................................................................................
5
이 책에 대하여
................................................................................................................
6
감사의 글
.......................................................................................................................
7
CHAPTER
1
탐색적 데이터 분석
1.1
정형화된 데이터의 요소
.................................................................................................. ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
파이썬 라이브러리를 활용한 머신러닝(번역개정판): 사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서
박해선, 안드레아스 뮐러, 세라 가이도
파이썬 라이브러리를 활용한 데이터 분석(2판): 영화 평점, 이름 통계, 선거 데이터 등 실사례 사용
김영근, 웨스 맥키니
스파크를 활용한 실시간 처리: 실시간 데이터 처리를 위한 고수준 스트리밍 API 마스터하기
김인범, 제러드 마스, 프랑수아 가릴로
자바로 배우는 핵심 자료구조와 알고리즘: 기술 면접에 필요한 실용주의 자료구조와 알고리즘
유동환, 앨런 B. 다우니
Publisher Resources
ISBN: 9791162240984