As mentioned previously, a neural network's performance depends on how good the values of W are (for simplicity, we will refer to both the weights and biases as W). When the whole network grows in size, it becomes untenable to manually determine the optimal weights for each neuron in every layer. Therefore, we rely on backpropagation, an algorithm that iteratively and automatically updates the weights of every neuron.

To update the weights, we first need the ground truth, or the target value that the neural network tries to output. To understand what this ground truth could look like, we formulate a sample problem. The MNIST dataset is a large repository of 28x28 images of handwritten digits. It contains 70,000 images in total ...

Get Python Reinforcement Learning Projects now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.