Skip to Content
40 Algorithms Every Programmer Should Know
book

40 Algorithms Every Programmer Should Know

by Imran Ahmad
June 2020
Intermediate to advanced
382 pages
11h 39m
English
Packt Publishing
Content preview from 40 Algorithms Every Programmer Should Know

Dimensionality reduction

Each feature in our data corresponds to a dimension in our problem space. Minimizing the number of features to make our problem space simpler is called dimensionality reduction. It can be done in one of the following two ways:

  • Feature selection: Selecting a set of features that are important in the context of the problem we are trying to solve

  • Feature aggregation: Combining two or more features to reduce dimensions using one of the following algorithms:

    • PCA: A linear unsupervised ML algorithm

    • Linear discriminant analysis (LDA): A linear supervised ML algorithm

    • Kernel principal component analysis: A nonlinear algorithm

Let's look deeper at one of the popular dimensionality reduction algorithms, namely PCA, in ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

50 Algorithms Every Programmer Should Know - Second Edition

50 Algorithms Every Programmer Should Know - Second Edition

Imran Ahmad
Grokking Algorithms

Grokking Algorithms

Aditya Bhargava

Publisher Resources

ISBN: 9781789801217Supplemental Content