Skip to Content
40 Algorithms Every Programmer Should Know
book

40 Algorithms Every Programmer Should Know

by Imran Ahmad
June 2020
Intermediate to advanced
382 pages
11h 39m
English
Packt Publishing
Content preview from 40 Algorithms Every Programmer Should Know

Multiple regression

The fact is that most real-world analyses have more than one independent variable. Multiple regression is an extension of simple linear regression. The key difference is that there are additional beta coefficients for the additional predictor variables. When training a model, the goal is to find the beta coefficients that minimize the errors of the linear equation. Let's try to mathematically formulate the relationship between the dependent variable and the set of independent variables (features).

Similar to a simple linear equation, the dependent variable, y, is quantified as the sum of an intercept term plus the product of the β coefficients multiplied by the x value for each of the i features:

y = α + β 1 x 1 + β

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

50 Algorithms Every Programmer Should Know - Second Edition

50 Algorithms Every Programmer Should Know - Second Edition

Imran Ahmad
Grokking Algorithms

Grokking Algorithms

Aditya Bhargava

Publisher Resources

ISBN: 9781789801217Supplemental Content