Skip to Content
Data Mining: Concepts and Techniques, 3rd Edition
book

Data Mining: Concepts and Techniques, 3rd Edition

by Jiawei Han, Micheline Kamber, Jian Pei
June 2011
Beginner to intermediate content levelBeginner to intermediate
744 pages
25h 11m
English
Morgan Kaufmann
Content preview from Data Mining: Concepts and Techniques, 3rd Edition

Publisher Summary

This chapter presents the basic concepts and methods of cluster analysis. The requirements of clustering methods for massive amounts of data and various applications are studied. Several basic clustering techniques are discussed organized into the following categories: partitioning methods, hierarchical methods, density-based methods, and grid-based methods). Evaluation process for clustering methods is also discussed. A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters. The process of grouping a set of physical or abstract objects into classes of similar objects is called clustering. Clustering is the process of grouping a set ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Statistics for Data Scientists, 2nd Edition

Practical Statistics for Data Scientists, 2nd Edition

Peter Bruce, Andrew Bruce, Peter Gedeck
Fundamentals of Data Engineering

Fundamentals of Data Engineering

Joe Reis, Matt Housley
Fundamentals of Data Engineering

Fundamentals of Data Engineering

Joe Reis, Matt Housley

Publisher Resources

ISBN: 9780123814791