Skip to Content
Data Mining: Concepts and Techniques, 3rd Edition
book

Data Mining: Concepts and Techniques, 3rd Edition

by Jiawei Han, Micheline Kamber, Jian Pei
June 2011
Beginner to intermediate content levelBeginner to intermediate
744 pages
25h 11m
English
Morgan Kaufmann
Content preview from Data Mining: Concepts and Techniques, 3rd Edition

Publisher Summary

This chapter aims to study outlier detection techniques. The different types of outliers are defined. An overview of outlier detection methods is also presented. Assume that a given statistical process is used to generate a set of data objects. An outlier is a data object that deviates significantly from the rest of the objects, as if it were generated by a different mechanism. Types of outliers include global outliers, contextual outliers, and collective outliers. An object may be more than one type of outlier. Outlier detection (also known as anomaly detection) is the process of finding data objects with behaviors that are very different from expectation. Outlier detection is important in many applications in addition to fraud ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Statistics for Data Scientists, 2nd Edition

Practical Statistics for Data Scientists, 2nd Edition

Peter Bruce, Andrew Bruce, Peter Gedeck
Fundamentals of Data Engineering

Fundamentals of Data Engineering

Joe Reis, Matt Housley
Fundamentals of Data Engineering

Fundamentals of Data Engineering

Joe Reis, Matt Housley

Publisher Resources

ISBN: 9780123814791